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Liouville equation

Liouville theory is described by the dynamical equation

∂2
ττΦ(τ, σ)− ∂2

σσΦ(τ, σ) + 4λ e2Φ(τ,σ) = 0

where τ and σ are time and space coordinates, respectively,
and λ is a constant parameter.

This equation can be interpreted as a model of 2d scalar field theory
with exponential self-interaction. In the light-cone coordinates
z = τ + σ, z̄ = τ − σ, the Liouville equation reads

∂2
zz̄Φ(z, z̄) + λ e2Φ(z,z̄) = 0

Liouville integrated this equation in 1853 and he found its general solution

Φ(τ, σ) =
1

2
log

A′(z) Ā′(z̄)

[1 + λA(z) Ā(z̄)]2

where A and Ā are monotonic functions (A′ > 0, Ā′ > 0.)
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Geometrical and physical interpretation

Our aim is to describe the geometrical picture related to the
Liouville equation and present its physical content.

We will show that Liouville equation describes 2d space-time with
constant curvature and we will interpret it as a model of 2d gravity.

We will describe the symmetries of the Liouville equation
related to its geometrical picture and we will show how these
symmetries define the general solution of this nonlinear field equation.

We will introduce stress tensor and asymptotic fields of Liouville theory
and finally we will construct its classical S-matrix.

To describe the geometrical picture related to Liouville equation,
we first introduce the curvature of 2d surfaces embedded in R3.
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2d sarface and the quadratic forms

Let us consider a 2d surface ~X(u1, u2), where ~X ∈ R3

and (u1, u2) are parameterizing coordinates.

The vectors ∂a ~X, a = (1, 2), are tangent to the surface.

Their scalar products define the matrix of the first quadratic form

gab = ∂a ~X · ∂b ~X

The second quadratic form is given by matrix

hab = ∂2
ab
~X · ~N

where ~N is the unit normal vector

~N =
∂1
~X × ∂2

~X

|∂1
~X × ∂2

~X|
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Carvature

The normal vector ~N is invariant under coordinate transformations

(u1, u2) 7→ (ũ1, ũ2)

and the quadratic forms transform as follows

g 7→ g̃ = JT g J , h 7→ h̃ = JT hJ

where J is the Jacobi matrix

Jab =
∂ub
∂ũa

The scalar curvature is given by the ratio

R =
2 det [h]

det [g]

which is invariant under coordinate transformations.
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Conformal metric

The first quadratic form is also called the metric tensor.
It defines the infinitesimal length square

d ~X · d ~X = gab dua dub

Using coordinate transformations, one can bring gab to the conformal form

gab = eφ
(

1 0
0 1

)
The corresponding coordinates are called conformal coordinates.

The vectors ∂1
~X, ∂2

~X and ~N then form an orthogonal basis in R3.

Below we calculate the scalar curvature in conformal coordinates.
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Calculation of the curvature

The expansion of the vectors ∂2
ab
~X and ∂a ~N in the orthogonal basis yields

∂11
~X =

φ1

2
∂1
~X − φ2

2
∂2
~X + h11

~N

∂22
~X = −φ1

2
∂1
~X +

φ2

2
∂2
~X + h22

~N

∂12
~X =

φ2

2
∂1
~X +

φ1

2
∂2
~X + h12

~N

∂1
~N = −

(
h11 ∂1

~X + h12 ∂2
~X
)

e−φ

∂2
~N = −

(
h21 ∂1

~X + h22 ∂2
~X
)

e−φ
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Calculation of the curvature

Using the identity
∂112

~X = ∂121
~X

and comparing the coefficients of the term ∂2X in both sides, one obtains

∂11φ+ ∂22φ = −2 (λ11 λ22 − λ12λ21) e−φ .

The scalar curvature in the conformal coordinates then reads

R = −e−φ
(
∂ 2
11
φ+ ∂ 2

22
φ
)

If the curvature is constant, R = R0, the function φ satisfies the equation

∂ 2
11
φ+ ∂ 2

22
φ+R0eφ = 0
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Positive constant curvature

As an example we consider a sphere of radius r embedded in R3

~X · ~X = r2

A line-element in the coordinates of the stereographic projection is

d ~X · d ~X =
4r4(du2

1 + du2
2)

(r2 + u2
1 + u2

2)2

This corresponds to

φ = log
4r4

(r2 + u2
1 + u2

2)2

which leads to a positive constant curvature

R = R0 =
2

r2
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Stereographic projection of a sphere
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Negative constant curvature

Let us consider the hyperbolois (Lobachevsky plane)

X2
0 −X2

1 −X2
2 = r2

A line-element here is defined by

dl2 = (dX1)2 + (dX2)2 − (dX0)2

and in the coordinates of the stereographic projection one finds

dl2 =
4r4(du2

1 + du2
2)

(r2 − u2
1 − u2

2)2

This now corresponds to

φ = log
4r4

(r2 − u2
1 − u2

2)2

and it provides a negative constant curvature

R = − 2

r2

GJ — Liouville Theory and 2d conformal symmetry Constant curvature 2d surfaces 12/30



Stereographic projection of a Lobachevsky plane
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Here, the coordinates (u1, u2) are bounded on the disk
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Complex conformal coordinates

Using complex conformal coordinates

z = u1 + iu2 z̄ = u1 − iu2

one obtains the line element

dl2 = eφ(z,z̄) dz dz̄

This form is covariant under the transformations

z 7→ f(z) z̄ 7→ f̄(z̄)

which yields

φ(z, z̄) 7→ φ(f(z), f̄(z̄)) + log
[
f ′(z)f̄(z̄)

]
Thus, the conformal transformations are given by the analytic functions.
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Riemann tensor

The scalar curvature can also be obtained from the Riemann tensor

Rabcd = ∂cΓ
a
bd − ∂dΓabc + Γaca′ Γa

′
bd − Γada′ Γa

′
bc

where Γabc is a symmetric connection compatible with the metric
(Christoffel’s symbol)

Γabc =
1

2
gad (∂bgdc + ∂cgbd − ∂dgbc)

A conformal metric in 2d provides the Christoffel’s symbols

Γ1
11 = Γ2

12 = Γ2
21 = −Γ1

22 =
1

2
∂1φ

Γ1
12 = Γ1

21 = Γ2
22 = −Γ2

11 =
1

2
∂2φ
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Scalar curvature in conformal coordinates

The non-zero components of the corresponding Riemann tensor are

R1
212 = −R1

221 = −R2
112 = R2

121 = −1

2

(
∂2

11φ+ ∂2
22φ
)

The Ricci tensor Rbd = Rabad then becomes

R11 = R22 = −1

2

(
∂2

11φ+ ∂2
22φ
)

R12 = R21 = 0

and one obtains the scalar curvature

R = gbdRbd = −e−φ
(
∂2

11φ+ ∂2
22φ
)

which coincides with the result obtained above using the quadratic forms.
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Generalization to a space-time

Generalization of the Riemann geometry to Lorentzian manifolds is
straightforward.

The Riemann tensor is the same, only in 2d the index a = (0, 1), where
u0 = τ and u1 = σ correspond to time and space coordinates, respectively.

A conformal Lorentzian metric has the form

gab = eφ
(
−1 0
0 1

)
and the corresponding Christoffel’s symbols read

Γ0
00 = Γ1

01 = Γ1
10 = Γ0

11 =
1

2
∂0φ

Γ1
00 = Γ0

01 = Γ0
10 = Γ1

11 =
1

2
∂1φ
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Riemann tensor in 2d space-time

They define the Riemann tensor with non-zero components

R0
101 = −R0

110 = −R1
010 = R1

001 =
1

2

(
∂2

00φ− ∂2
11φ
)

The Ricci tensor then becomes

R11 = −R00 =
1

2

(
∂2

00φ− ∂2
11φ
)

R01 = R10 = 0

and one obtains the scalar curvature

R = e−φ
(
∂2

00φ− ∂2
11φ
)

GJ — Liouville Theory and 2d conformal symmetry Curvature of 2d space-time 18/30



Constant curvature 2d space-time

If the curvature of space-time is constant, R = −8λ, the field Φ = 1
2 φ

satisfies the Liouville equation

∂2
ττΦ(τ, σ)− ∂2

σσΦ(τ, σ) + 4λ e2Φ(τ,σ) = 0

Thus, the Liouville equation describes 2d space-time with constant
curvature

R = −8λ

Positive λ corresponds to space-time with negative curvature, i.e. AdS2.

An example for λ = µ2 is the (τ, σ) strip

τ ∈ R1 0 < σ <
π

2µ
e2Φ =

1

sin2(2µσ)

Negative λ corresponds to a positive curvature space-time, i.e. dS2.

It is obtained from AdS2 by exchange of space and time coordinates.
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Conformal transformations

Conformal transformations preserve the conformal form of the metric.

It is convenient to use the light-cone coordinates

z = τ + σ z̄ = τ − σ

The conformal metric defines the length element

−e2Φ(z,z̄) dz dz̄

and the conformal transformations are given by

z 7→ ζ(z) z̄ 7→ ζ̄(z̄)

with monotonic functions ζ and ζ̄.

The field Φ then transforms as

Φ(z, z̄) 7→ Φ(ζ(z), ζ̄(z̄)) +
1

2
log ζ ′(z) ζ̄ ′(z̄)
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Conformal symmetry of the Liouville equation

From the geometric interpretation of the Liouville equation follows that
the space of solutions is invariant under the conformal transformations,
i.e. if Φ(z, z̄) is a solution of the Liouville equation

∂2
zz̄Φ(z, z̄) + λ e2Φ(z,z̄) = 0

then the field

Φ̃(z, z̄) = Φ(ζ(z), ζ̄(z̄)) +
1

2
log ζ ′(z)ζ̄ ′(z̄)

satisfies the same equation.

This symmetry allows to obtain the general solution in the form
presented in the introduction.

For this purpose it is enough to find one simple solution and
consider its conformal transformations.
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Particle in the exponential potential

A homogeneous Liouville field corresponds to ∂σΦ = 0.

With the notations Q(τ) := Φ(τ, σ), λ := µ2 one gets the equation

Q̈(τ) + 4µ2 e2Q(τ) = 0

which corresponds to particle dynamics in the exponential potential.

Using the conservation of particle energy

E =
1

2
Q̇2(τ) + 2µ2 e2Q(τ)

after standard integration one obtains the solution

Q(τ) = log
p

2µ cosh(p τ)

with p =
√

2E.
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Conformal transformations of the Liouville field

The corresponding Liouville field exponential reads

e2Φ(z,z̄) =
p2

4µ2 cosh2
(
p z+z̄2

)
The conforml transformations of this field can be written as

e2Φ(z,z̄) =
A′(z) Ā′(z̄)

[1 + µ2A(z) Ā(z̄)]2

The parameterizing functions of the general solution and of the conformal
transformations are related by

µA(z) = ep ζ(z) µ Ā(z̄) = ep ζ̄(z̄)

Thus, the general solution of Liouville equation is interpreted as the orbit
of the 2d conformal group.
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A model of 2d gravity

The calculation of the Ricci tensor and of the scalar curvature in the
conformal coordinates shows that in two dimensions Einstein equations

Rab −
1

2
Rgab = 0

are identities rather than equations.

On the other hand, the Liouville equation is equivalent to the covariant
equation R = R0 in the conformal coordinates. Note that in 2d the
equation R = R0 is equivalent to

Rab −
1

2
R0 gab = 0

In this form the Liouville equation is interpreted as a model of 2d gravity.

GJ — Liouville Theory and 2d conformal symmetry A model of 2d gravity 24/30



Covariant action

Liouville theory can be described by the following covariant action

S =

∫
dτdσ

√
−g

(
1

2
gab ∂aϕ∂bϕ− 2λ e2ϕ − 1

2
ϕR

)
where ϕ is a scalar field, gab is a background metric tensor and R is its
curvature. In the conformal coordinates, one has

gab = eφ
(

1 0
0 −1

)
, R = e−φ(φττ − φσσ)

Up to the boundary and ϕ-independent terms, the action reduces to

S =

∫
dτdσ

(
1

2
(Φ2

τ − Φ2
σ)− 2λ e2Φ

)
with Φ = ϕ+ φ/2. Its variation obviously provides the Liouville equation.
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Stress tensor

Below we consider Liouville theory for negative curvature, λ = µ2.

The stress tensor components of Liouville theory are introduced by

T = (∂zΦ)2 − ∂2
zzΦ T̄ = (∂z̄Φ)2 − ∂2

z̄z̄Φ

and the energy and momentum densities can be written as

E = T + T̄ =
1

2
(∂τΦ)2 +

1

2
(∂σΦ)2 + 2µ2 e2Φ − ∂2

σσΦ

P = T − T̄ = ∂τΦ ∂σΦ− ∂2
τσΦ

From the Liouville equation follows the chirality conditions

∂z̄T = 0 ∂zT̄ = 0

which are equivalent to the local conservation laws

Ė − P ′ = 0 Ṗ − E ′ = 0
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Vertex function

The Liouville field exponential V = e−Φ satisfies the equations

∂2
zzV = T (z)V ∂2

z̄z̄V = T̄ (z̄)V

which follow from the definition of the stress tensor components.
The Liouville equation is equivalent to

V ∂2
zz̄V − ∂zV ∂z̄V = µ2

The solutions of the Hill equations

ψ′′α(z) = T (z)ψα(z) , ψ̄′′α(z̄) = T̄ (z̄) ψ̄α(z̄) , (α = 1, 2) ,

with unit Wronskians, W [ψ1, ψ2] = W [ψ̄1, ψ̄2] = 1, provide

V (x, x̄) = µ
[
ψ1(x) ψ̄1(x̄) + ψ2(x) ψ̄2(x̄)

]
which can also be treated as the general solution in terms of chiral fields.
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Asymptotic fields

Setting T = T̄ = 1
4 p

2, with p > 0, one finds again the particle solution

V = e−Φ =
µ

p

(
e−pτ + epτ

)
and its conformal transformation can be written as

e−Φ = e−Φin + e−Φout with

Φin =
1

2
log
[
ζ ′(z) ζ̄ ′(z̄)

]
+

1

2
p
[
ζ(z) + ζ̄(z̄)

]
+ log

(
p

µ

)
Φout =

1

2
log
[
ζ ′(z) ζ̄ ′(z̄)

]
− 1

2
p
[
ζ(z) + ζ̄(z̄)

]
+ log

(
p

µ

)
Because of p > 0, the fields Φin and Φout are interpreted as

the in and out fields, respectively.
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The S-matrix

From the equations of the previous page follows

e−Φout(z,z̄) = e−Φin(z,z̄) µ2

∫ z

−∞
dx e2φin(x)

∫ z̄

−∞
dx̄ e2φ̄in(x̄)

where φin and φ̄in correspond to the chiral decomposition

Φin(z, z̄) = φin(z) + φ̄in(z̄)

The obtained equation defines the classical S-matrix, since it

provides the out-field exponential in terms of the in field.

The aim is to quantize the system, to construct the vertex operators

and to find the operator for the S-matrix.

These are the topics of additional lectures.
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Conclusions

• We have introduced the notion of the scalar curvature for 2d surfaces
and calculated it in the conformal coordinates.

• It has been shown that the Liouville equation describes constant
curvature 2d space-time.

• We have introduced the 2d conformal transformations and it has been
shown that the Liouville equation is invariant under these transformatins.

• We have shown that the general solution of the Liouville equation
is given as the orbit of 2d conformal group.

• We have found that the Liouville equation can be interpreted as a model
of 2d gravity.

• We have introduced the energy-momentum tensor, the vertex functions
and the asymptotic fields for Liouville theory and, finally, we have
constructed the classical S-matrix.

Exercises: To derive the equations presented in the lectures.
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