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Liouville equation
Liouville theory is described by the dynamical equation
92 ®(1,0) — 02, ®(7,0) + 41?77 = ¢

where 7 and o are time and space coordinates, respectively,
and )\ is a constant parameter.

This equation can be interpreted as a model of 2d scalar field theory
with exponential self-interaction. In the light-cone coordinates
z=T7T+40,Z=T— 0, the Liouville equation reads

2. (2, 2) + 12?2 —
Liouville integrated this equation in 1853 and he found its general solution

1 A(z) A(3)
®(r0) =5 e T AR A

where A and A are monotonic functions (A’ > 0, A’ > 0.)
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Geometrical and physical interpretation

Our aim is to describe the geometrical picture related to the
Liouville equation and present its physical content.

We will show that Liouville equation describes 2d space-time with
constant curvature and we will interpret it as a model of 2d gravity.

We will describe the symmetries of the Liouville equation
related to its geometrical picture and we will show how these
symmetries define the general solution of this nonlinear field equation.

We will introduce stress tensor and asymptotic fields of Liouville theory
and finally we will construct its classical S-matrix.

To describe the geometrical picture related to Liouville equation,
we first introduce the curvature of 2d surfaces embedded in R3.
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2d sarface and the quadratic forms

Let us consider a 2d surface X(ul,ug), where X € R3
and (u1,ug) are parameterizing coordinates.

The vectors 9,X, a = (1,2), are tangent to the surface.

Their scalar products define the matrix of the first quadratic form
Gab = DX - X

The second quadratic form is given by matrix
hay = 02, X - N

where N is the unit normal vector

(91)2 X 62)2

N:ﬁ
|81X X (92X|
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Carvature
The normal vector N is invariant under coordinate transformations
(uy,uz) — (1, u2)
and the quadratic forms transform as follows
g—g=J"gJ, heh=J"hJ
where J is the Jacobi matrix

Ouy

~ iy,

Jab

The scalar curvature is given by the ratio

_ 2det [h]
B= "getly)

which is invariant under coordinate transformations.
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Conformal metric

The first quadratic form is also called the metric tensor.
It defines the infinitesimal length square

dX - dX = gup dug duy

Using coordinate transformations, one can bring g, to the conformal form

1 0
gab:e¢<0 1)

The corresponding coordinates are called conformal coordinates.
The vectors 81)2, 82)? and N then form an orthogonal basis in R3.

Below we calculate the scalar curvature in conformal coordinates.
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Calculation of the curvature

The expansion of the vectors Ogb)? and 9, N in the orthogonal basis yields

811)2 = ¢1 81X - ¢2 82X + h11 N
X = ¢1 aX+ = ¢2 MX + hoy N
(912)2 = ¢2 81X + —= ¢1 82X + hio N

ON = — <h11 X + his (92X> e ?

N = — <h21 NX + hoo 32X> e ?
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Calculation of the curvature

Using the identity ~ .
8112X = 8121X

and comparing the coefficients of the term 05X in both sides, one obtains
M1+ Do = —2 (A1 Aa2 — A2 Aa1) e .
The scalar curvature in the conformal coordinates then reads

R=—e? (612 ¢+ 8222 )

1

If the curvature is constant, R = Ry, the function ¢ satisfies the equation

02¢ + 024+ Rye’ =0
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Positive constant curvature

As an example we consider a sphere of radius r embedded in R3

—

X. X =92

A line-element in the coordinates of the stereographic projection is

4% . dR = 4r4(du? + du3)
(r? + uf + u3)?
This corresponds to
4 4
6 = log :

(r? + u? + u3)?

which leads to a positive constant curvature

R=Ry=—
7"2
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Stereographic projection of a sphere

2r2 Uy
1 r2+u%+u§

X, =r— 52

2 2 2
r +u1 +u2
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Negative constant curvature
Let us consider the hyperbolois (Lobachevsky plane)
X2 - X} - X3 =12
A line-element here is defined by
di? = (dX1)? 4 (dX2)% — (dXp)?
and in the coordinates of the stereographic projection one finds

i — 4r4(du% + du%)
RGETEr

This now corresponds to
4rt
2

=1
¢=log (r2 — u% — u3z)?

and it provides a negative constant curvature

2
f==0
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Stereographic projection of a Lobachevsky plane

? 3
X, X
( 19 2) r
2r2 2r2 273
_ 1 _ 2 — r _
Xl - rz—u%—ug X2 - T2—u§—u§ XO - r2—u§—ug r

Here, the coordinates (u1,u2) are bounded on the disk

u%—l—u%<r2
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Complex conformal coordinates

Using complex conformal coordinates

uy — iUQ

N
Il

Z = U1 + iug
one obtains the line element
di? = e?#7) dz dz
This form is covariant under the transformations
2 () 20 f(2)
which yields
$(2,2) = o(f(2), [(2)) +log [f'(2) [ ()]

Thus, the conformal transformations are given by the analytic functions.
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Riemann tensor
The scalar curvature can also be obtained from the Riemann tensor
a _ a a a a’ a a’
R%q = 0% — 0al e + 100 T%g — T T'%,

where I'% is a symmetric connection compatible with the metric
(Christoffel’s symbol)

1
% = 3 9" (Bpgde + OcGba — Dagve)

A conformal metric in 2d provides the Christoffel’s symbols

1
Flu = FZ12 = I‘221 = —F122 = 5 019

1
I‘112 = I1121 = F222 = —F211 = 9 0200
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Scalar curvature in conformal coordinates

The non-zero components of the corresponding Riemann tensor are
R1212 = _R1221 = —R2112 = R2121 = —% (3%1(25 + 3§2¢)
The Ricci tensor Ryq = R%,,; then becomes
Ryp = Rao = —% (0810 + 03,9) Ri2=Ro1 =0
and one obtains the scalar curvature
R=g"Ryy=—e? (3%@ + 8§2¢)

which coincides with the result obtained above using the quadratic forms.
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Generalization to a space-time

Generalization of the Riemann geometry to Lorentzian manifolds is
straightforward.

The Riemann tensor is the same, only in 2d the index a = (0, 1), where
ug = 7 and u; = o correspond to time and space coordinates, respectively.

A conformal Lorentzian metric has the form

-1 0
_ o
Gab e<0 1>

and the corresponding Christoffel’s symbols read

1
FO00 = F101 = Fl10 = Fon = 5 o

1
Iy =T% =I%, =T, = 3 O ¢
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Riemann tensor in 2d space-time

They define the Riemann tensor with non-zero components
R0101 = —Rono = —Rlow = Rlool = % (8(2)045 - 3%1¢)
The Ricci tensor then becomes
Ry1 = —Ryo = é (8509 — 0719) Ror = Rio=0
and one obtains the scalar curvature

R=e? (8§0¢ - 8%1¢)
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Constant curvature 2d space-time

If the curvature of space-time is constant, R = —8), the field ®
satisfies the Liouville equation

I
N[
ASS

872'7'(1)(7-7 U) - 602-0-(1)(7-, U) + 4X 624)(7-’0) =0

Thus, the Liouville equation describes 2d space-time with constant
curvature

R = -8\
Positive A corresponds to space-time with negative curvature, i.e. AdSs.

An example for A = p? is the (7,0) strip

1
TERl 0<O’<l em:?
2u sin®(2uo)

Negative A corresponds to a positive curvature space-time, i.e. dS,.

It is obtained from AdSs by exchange of space and time coordinates.
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Conformal transformations
Conformal transformations preserve the conformal form of the metric.
It is convenient to use the light-cone coordinates

Z2=T4+0 Z=T—0
The conformal metric defines the length element

—e2®(=2) 4> dz

and the conformal transformations are given by

2 ((z) 2= C(2)
with monotonic functions ¢ and (.

The field ® then transforms as

3(z,2) 1 B(((2),{(2) + 5 loal'(2) T(2)
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Conformal symmetry of the Liouville equation

From the geometric interpretation of the Liouville equation follows that
the space of solutions is invariant under the conformal transformations,

i.e. if ®(z,2) is a solution of the Liouville equation
2. ®(z,2) + 12?2 =

then the field

Bz, 2) = B(C(2),C(2)) + 5 loa ()T (2)
satisfies the same equation.

This symmetry allows to obtain the general solution in the form
presented in the introduction.

For this purpose it is enough to find one simple solution and
consider its conformal transformations.
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Particle in the exponential potential

A homogeneous Liouville field corresponds to 0,% = 0.

With the notations Q(7) := ®(7,0), A := u? one gets the equation

Q(r) +4p* e =0

which corresponds to particle dynamics in the exponential potential.

Using the conservation of particle energy
1 .
E = 3 Q*(1) + 212 e2Q(7)
after standard integration one obtains the solution

_ p
Q(r) = log 2u cosh(pT)

with p = V2F.
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Conformal transformations of the Liouville field

The corresponding Liouville field exponential reads

2
&28(2,2) _ p

4412 cosh? (p=2)

The conforml transformations of this field can be written as

Q20(27) _ A'(z) A/(E_)
[1+p? A(z) A(2)]?

The parameterizing functions of the general solution and of the conformal
transformations are related by

pA(z) = eP¢?) pA(z) = eP<

Thus, the general solution of Liouville equation is interpreted as the orbit
of the 2d conformal group.
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A model of 2d gravity

The calculation of the Ricci tensor and of the scalar curvature in the
conformal coordinates shows that in two dimensions Einstein equations

1
Rab_ §Rgab =0

are identities rather than equations.

On the other hand, the Liouville equation is equivalent to the covariant
equation R = Ry in the conformal coordinates. Note that in 2d the
equation R = Ry is equivalent to

1
Rab_iRogabZO

In this form the Liouville equation is interpreted as a model of 2d gravity.
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Covariant action

Liouville theory can be described by the following covariant action
1 ab 2 1
S = [drdo+/—g 39 8acp8bg0—2Ae‘P—§g0R

where ¢ is a scalar field, g, is a background metric tensor and R is its
curvature. In the conformal coordinates, one has

Gab = e¢ < é _(1] ) ) R = e_¢(¢7'7' - gbaa)

Up to the boundary and ¢-independent terms, the action reduces to

S = /dea (; (B2 — ®2) — 2\ e2‘1>)

with ® = ¢ + ¢/2. Its variation obviously provides the Liouville equation.
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Stress tensor

Below we consider Liouville theory for negative curvature, A = 2.
The stress tensor components of Liouville theory are introduced by

T =(0,9)* - 02,0 T = (0:9)? — 02,9
and the energy and momentum densities can be written as
E=T+T= % (8,®)° + % (0,®)% + 242 2® — 92, @
P=T-T=0.20, - 02,
From the Liouville equation follows the chirality conditions
0:T =0 9, T =0
which are equivalent to the local conservation laws

E-P'=0 P-E&=0

GJ — Liouville Theory and 2d conformal symmetry Classical Liouville theory 26/30



Vertex function

The Liouville field exponential V' = e~® satisfies the equations
RV=T(>V  LV=TQEV

which follow from the definition of the stress tensor components.
The Liouville equation is equivalent to

VoLV — 0.V o,V = u?

The solutions of the Hill equations

%:(Z) = T(Z) @Zja(z) ) ¢g(5) = T(Z) 7;&(2) ) (Oé =1, 2) s
with unit Wronskians, Wi, 1] = W i1, ¢s] = 1, provide
V(w,7) = [91(2) ¥1(Z) + v2(x) ¥2(7)]

which can also be treated as the general solution in terms of chiral fields.
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Asymptotic fields

Setting T =T = %pQ, with p > 0, one finds again the particle solution
Vee?=t (e7PT + €P7)
p
and its conformal transformation can be written as

e = e Pin 4 g™ Pout with

B = 5 108 () TG + 5 [00:) + 821 +10g )

2 2
Because of p > 0, the fields ®;, and P, are interpreted as

Dou =+ log [C(2)E(3)] — L p[C(2) +E(2)] +log (fj)

the in and out fields, respectively.
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The S-matrix

From the equations of the previous page follows
z z _
e~Pon(27) _ o~n(2) 2 / i 20 () / 4 e260n (@)
—00 — o

where @i, and ¢, correspond to the chiral decomposition
(I)in(za 2) = ¢in(2) + d_)in(g)

The obtained equation defines the classical S-matrix, since it

provides the out-field exponential in terms of the in field.

The aim is to quantize the system, to construct the vertex operators
and to find the operator for the S-matrix.

These are the topics of additional lectures.
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Conclusions

e We have introduced the notion of the scalar curvature for 2d surfaces
and calculated it in the conformal coordinates.

e |t has been shown that the Liouville equation describes constant
curvature 2d space-time.

e We have introduced the 2d conformal transformations and it has been
shown that the Liouville equation is invariant under these transformatins.

e We have shown that the general solution of the Liouville equation
is given as the orbit of 2d conformal group.

e We have found that the Liouville equation can be interpreted as a model
of 2d gravity.

e We have introduced the energy-momentum tensor, the vertex functions
and the asymptotic fields for Liouville theory and, finally, we have
constructed the classical S-matrix.

Exercises: To derive the equations presented in the lectures.
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